Как найти значение выражения

Числовым выражением является запись чисел в совокупности с арифметическими операциями и скобками. Когда в выражении совместно с числами используются переменные и все выражение составлено со смыслом, то его называют алгебраическим (буквенным) выражением. Если в выражении присутствуют прямые, производные, обратные и другие тригонометрические функции, тогда выражение называют тригонометрическим. Большое количество примеров и задач с применением различных выражений детально изложено в школьном курсе математики.

Основное что нужно помнить:

1. Значением числового выражения будет являться число, полученное при выполнении арифметических действий в этом выражении. Главное последовательно выполнять арифметические действия. Для простоты всей операции, действия можно пронумеровать. Если выражение содержит скобки, то первым делом выполняем действие соответствующее знаку в скобках. Возведение в степень будет следующим этапом. Дальше по приоритету выполняем умножение либо деление и только в самом конце сложение и вычитание.

А теперь найдем значение числового выражения 5+20*(60-45). Для начала «избавляемся» от скобок. Выполняя действие, получим 60-45=15. Теперь мы имеем 5+20*15. Следующее действие умножение 20*15=300. И последним действием будет сложение, выполняем его и получаем конечный результат 5+300=305.

2. При известном угле? Работая с тригонометрическими выражениями, потребуются знания основных тригонометрических формул, которые помогут упростить выражение. Найдем значение выражения cos 12? cos 18?- sin 12? sin 18?. Чтобы упростить данное выражение воспользуемся формулой cos (? +?) = cos? cos? — sin? sin?, тогда получим cos 12? cos 18?- sin 12? sin 18?= cos(12? +18?)= cos30? =v3?2.

3. Выражения с переменными. Нужно помнить, что значение алгебраического выражения напрямую зависит от переменной. Переменные можно обозначать буквами греческого либо латинского алфавита. Когда мы имеем заданные параметры алгебраического выражения, для начала его нужно упростить. После этого необходимо подставить заданные переменные и произвести арифметические операции. В итоге при заданных переменных мы получим число, которое и будет являться значением алгебраического выражения. Рассмотрим такой пример, где нужно найти значение выражения 3(a+y)+2(3a+2y) при a=4 и y=5. Упростим это выражение и получим 3a+3y+6a+4y=9a+7y. Теперь необходимо подставить значение переменных и вычислить, полученный результат и будет являться значением выражения. Итак, мы имеем 9a+7y при a=4 и y=5 получим 36+35=71. Обратите внимание на то, что алгебраические выражения не всегда имеют смысл. Например, такое выражение 15:(b-4) имеет смысл при любом b кроме b =4.